

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

CHANGELOG

0.20 (UNRELEASED)

	Added query_validator option to ASGI and WSGI GraphQL applications that enables customization of query validation step.

	Fixed ERROR message in GraphQL-WS protocol having invalid payload type.

0.19.1 (2023-03-28)

	Fixed .graphql definitions files not being included in the dist files

0.19.0 (2023-03-27)

	Added InputType for setting Python representations of GraphQL Input types

	Added support for passing Enum types directly to make_executable_schema

	Added convert_names_case option to make_federated_schema.

	Added support for the @interfaceObject directive in Apollo Federation.

	Fixed federation support for directives without surrounding whitespace.

0.18.1 (2023-02-22)

	Fixed type annotations on EnumType.

0.18.0 (2023-02-21)

	GraphiQL2 is now default API explorer.

	Added explorer option to ASGI and WSGI GraphQL applications that enables API explorer customization.

	Added ExplorerHttp405 API explorer that returns 405 Method Not Allowed for GET HTTP requests.

	Added implementations for GraphiQL2, GraphQL-Playground and Apollo Sandbox explorers.

	Added convert_names_case option to make_executable_schema to convert all names in schema to Python case using default or custom strategy.

	Added support for Path-like objects to load_schema_from_path.

	Changed logger option to also support Logger and LoggerAdapter instance in addition to str with logger name.

	Added support for @tag directive used by Apollo Federation.

	Moved project configuration from setup.py to pyproject.toml.

	Changed context_value option in ASGI and WSGI applications for callables to take query data as second argument.

	Changed root_value option in ASGI and WSGI applications for callables to take operation and and variables in addition to context and parsed query.

	Added execution_context_class option to ASGI and WSGI applications.

	Added query_parser option to ASGI and WSGI GraphQL applications that enables query parsing customization.

	Changed middleware option to work with callable or list of middlewares instead of MiddlewareManager instance.

	Added middleware_manager_class option to ASGI and WSGI applications.

	Added handle_request and handle_websocket methods to ASGI application that takes Starlette/FastAPI Request and Websocket objects.

	Fixed type annotations for middlewares.

	Added docstrings to members of public API.

0.17.1 (2023-01-09)

	Fixed an error when schema that defines an interface type with fields having enum arguments with default values (eg. field(arg: Enum = ENUM_MEMBER)) is introspected.

0.17.0 (2022-12-14)

	Bumped starlette dependency in setup.py to <1.0.

	Added Python 3.11 to test matrix.

	Removed usage of deprecated cgi module.

	Renamed asgi-file-uploads optional dependency to file-uploads.

0.16.1 (2022-09-26)

	Fixed GraphQLTransportWSHandler implementation to handle multiple connections.

0.16.0 (2022-09-08)

	Refactored ariadne.asgi.GraphQL to use strategy pattern for handling HTTP and WebSockets.

	Updated load_schema_from_path to also support .gql and .graphqls files.

	Added support for starlette 0.20.

0.15.1 (2022-04-22)

	Fix performance regression in make_federated_schema.

0.15.0 (2022-04-13)

	Updated graphql-core requirement to 3.2.0.

	Bumped starlette supported versions to 0.18 and 0.19.

	Drop Python 3.6 support.

	Added basic support for OPTIONS HTTP request.

	Refactor ariadne.asgi.GraphQL to make it easier to customize JSON response.

	Added trace_default_resolver to ApolloTracingExtension that enables tracing for default resolvers.

	Fixed make_federated_schema error when custom directive in schema has description.

	Moved set_default_enum_values_on_schema, validate_schema_enum_values and type_implements_interface to public API.

	Changed graphql_sync to use execute_sync instead of execute.

	Added on_operation hook to ariadne.asgi.GraphQL that’s called when individual subscription operation is started.

	Added on_complete hook to ariadne.asgi.GraphQL that’s called when individual subscription operation is completed.

	Updated on_disconnect hook so its called in Webhook handler’s finally clause, making it called in more situations.

	Marked Extension, ExtensionSync and SchemaBindable protocols as @runtime_checkable.

	Renamed parent to obj in ApolloTracing and OpenTracing extensions so arg name won’t cause conflict when custom resolver has parent arg.

0.14.1 (2022-01-28)

	Remove ariadne.contrib.django from release.

	Lock GraphQL-core requirement at <3.2.

0.14.0 (2021-11-24)

	Added on_connect and on_disconnect options to ariadne.asgi.GraphQL, enabling developers to run additional initialization and cleanup for websocket connections.

	Updated Starlette dependency to 0.17.1.

	Added support for multiple keys for GraphQL federations.

	Made Query type optional in federated schemas.

	Updated default resolvers to test for Mapping instead of dict.

	Removed ariadne.contrib.django. (Use ariadne_django [https://github.com/reset-button/ariadne_django] instead).

	Updated query cost validator to handle optional variables.

0.13.0 (2021-03-17)

	Updated graphql-core requirement to 3.1.3.

	Added support for Python 3.9.

	Added support for using nested variables as cost multipliers in the query price validator.

	None is now correctly returned instead of {"__typename": typename} within federation.

	Fixed some surprising behaviors in convert_kwargs_to_snake_case and snake_case_fallback_resolvers.

0.12.0 (2020-08-04)

	Added validation_rules option to query executors as well as ASGI and WSGI apps and Django view that allow developers to include custom query validation logic in their APIs.

	Added introspection option to ASGI and WSGI apps, allowing developers to disable GraphQL introspection on their server.

	Added validation.cost_validator query validator that allows developers to limit maximum allowed query cost/complexity.

	Removed default literal parser from ScalarType because GraphQL already provides one.

	Added extensions and introspection configuration options to Django view.

	Updated requirements list to require graphql-core 3.

0.11.0 (2020-04-01)

	Fixed convert_kwargs_to_snake_case utility so it also converts the case in lists items.

	Removed support for sending queries and mutations via WebSocket.

	Freezed graphql-core dependency at version 3.0.3.

	Unified default info.context value for WSGI to be dict with single request key.

0.10.0 (2020-02-11)

	Added support for Apollo Federation.

	Added the ability to send queries to the same channel as the subscription via WebSocket.

0.9.0 (2019-12-11)

	Updated graphql-core-next to graphql-core 3.

0.8.0 (2019-11-25)

	Added recursive loading of GraphQL schema files from provided path.

	Added support for passing multiple bindables as *args to make_executable_schema.

	Updated Starlette dependency to 0.13.

	Made python-multipart optional dependency for asgi-file-uploads.

	Added Python 3.8 to officially supported versions.

0.7.0 (2019-10-03)

	Added support for custom schema directives.

	Added support for synchronous extensions and synchronous versions of ApolloTracing and OpenTracing extensions.

	Added context argument to has_errors and format hooks.

0.6.0 (2019-08-12)

	Updated graphql-core-next to 1.1.1 which has feature parity with GraphQL.js 14.4.0.

	Added basic extensions system to the ariadne.graphql.graphql. Currently only available in the ariadne.asgi.GraphQL app.

	Added convert_kwargs_to_snake_case utility decorator that recursively converts the case of arguments passed to resolver from camelCase to snake_case.

	Removed default_resolver and replaced its uses in library with graphql.default_field_resolver.

	Resolver returned by resolve_to util follows graphql.default_field_resolver behaviour and supports resolving to callables.

	Added is_default_resolver utility for checking if resolver function is graphql.default_field_resolver, resolver created with resolve_to or alias.

	Added ariadne.contrib.tracing package with ApolloTracingExtension and OpenTracingExtension GraphQL extensions for adding Apollo tracing and OpenTracing monitoring to the API (ASGI only).

	Updated ASGI app disconnection handler to also check client connection state.

	Fixed ASGI app context_value option support for async callables.

	Updated middleware option implementation in ASGI and WSGI apps to accept list of middleware functions or callable returning those.

	Moved error formatting utils (get_formatted_error_context, get_formatted_error_traceback, unwrap_graphql_error) to public API.

0.5.0 (2019-06-07)

	Added support for file uploads.

0.4.0 (2019-05-23)

	Updated graphql-core-next to 1.0.4 which has feature parity with GraphQL.js 14.3.1 and better type annotations.

	ariadne.asgi.GraphQL is now an ASGI3 application. ASGI3 is now handled by all ASGI servers.

	ObjectType.field and SubscriptionType.source decorators now raise ValueError when used without name argument (eg. @foo.field).

	ScalarType will now use default literal parser that unpacks ast.value and calls value parser if scalar has value parser set.

	Updated ariadne.asgi.GraphQL and ariadne.wsgi.GraphQL to support callables for context_value and root_value options.

	Added logger option to ariadne.asgi.GraphQL, ariadne.wsgi.GraphQL and ariadne.graphql.* utils.

	Added default logger that logs to ariadne.

	Added support for extend type in schema definitions.

	Removed unused format_errors utility function and renamed ariadne.format_errors module to ariadne.format_error.

	Removed explicit typing dependency.

	Added ariadne.contrib.django package that provides Django class-based view together with Date and Datetime scalars.

	Fixed default ENUM values not being set.

	Updated project setup so mypy ran in projects with Ariadne dependency run type checks against it’s annotations.

	Updated Starlette to 0.12.0.

0.3.0 (2019-04-08)

	Added EnumType type for mapping enum variables to internal representation used in application.

	Added support for subscriptions.

	Updated Playground to 1.8.7.

	Split GraphQLMiddleware into two classes and moved it to ariadne.wsgi.

	Added an ASGI interface based on Starlette under ariadne.asgi.

	Replaced the simple server utility with Uvicorn.

	Made users responsible for calling make_executable_schema.

	Added UnionType and InterfaceType types.

	Updated library API to be more consistent between types, and work better with code analysis tools like PyLint. Added QueryType and MutationType convenience utils. Suffixed all types names with Type so they are less likely to clash with other libraries built-ins.

	Improved error reporting to also include Python exception type, traceback and context in the error JSON. Added debug and error_formatter options to enable developer customization.

	Introduced Ariadne wrappers for graphql, graphql_sync, and subscribe to ease integration into custom servers.

0.2.0 (2019-01-07)

	Removed support for Python 3.5 and added support for 3.7.

	Moved to GraphQL-core-next that supports async resolvers, query execution and implements a more recent version of GraphQL spec. If you are updating an existing project, you will need to uninstall graphql-core before installing graphql-core-next, as both libraries use graphql namespace.

	Added gql() utility that provides GraphQL string validation on declaration time, and enables use of Apollo-GraphQL [https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo] plugin in Python code.

	Added load_schema_from_path() utility function that loads GraphQL types from a file or directory containing .graphql files, also performing syntax validation.

	Added start_simple_server() shortcut function for quick dev server creation, abstracting away the GraphQLMiddleware.make_server() from first time users.

	Boolean built-in scalar now checks the type of each serialized value. Returning values of type other than bool, int or float from a field resolver will result in a Boolean cannot represent a non boolean value error.

	Redefining type in type_defs will now result in TypeError being raised. This is a breaking change from previous behavior where the old type was simply replaced with a new one.

	Returning None from scalar parse_literal and parse_value function no longer results in GraphQL API producing default error message. Instead, None will be passed further down to resolver or produce a “value is required” error if its marked as such with ! For old behavior raise either ValueError or TypeError. See documentation for more details.

	resolvers argument defined by GraphQLMiddleware.__init__(), GraphQLMiddleware.make_server() and start_simple_server() is now optional, allowing for quick experiments with schema definitions.

	dict has been removed as primitive for mapping python function to fields. Instead, make_executable_schema() expects object or list of objects with a bind_to_schema method, that is called with a GraphQLSchema instance and are expected to add resolvers to schema.

	Default resolvers are no longer set implicitly by make_executable_schema(). Instead you are expected to include either ariadne.fallback_resolvers or ariadne.snake_case_fallback_resolvers in the list of resolvers for your schema.

	Added snake_case_fallback_resolvers that populates schema with default resolvers that map CamelCase and PascalCase field names from schema to snake_case names in Python.

	Added ResolverMap object that enables assignment of resolver functions to schema types.

	Added Scalar object that enables assignment of serialize, parse_value and parse_literal functions to custom scalars.

	Both ResolverMap and Scalar are validating if schema defines specified types and/or fields at the moment of creation of executable schema, providing better feedback to the developer.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at hello@mirumee.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing

Thank you for your interest in contributing to Ariadne!

We welcome bug reports, questions, pull requests, and general feedback.

We also ask all contributors to familiarize themselves with and follow project’s code of conduct, available in the CODE_OF_CONDUCT.md file kept in the repository’s main directory.

Reporting bugs, asking for help, offering feedback and ideas

You can use GitHub issues [https://github.com/mirumee/ariadne/issues] to report bugs, ask for help, share your ideas, or simply offer feedback. We are curious what you think of Ariadne!

Development setup

Ariadne is written to support Python 3.6, 3.7 and 3.8.

Codebase is formatted using Black [https://github.com/ambv/black], and the contents of the ariadne package are annotated with types and validated using mypy [http://mypy-lang.org/index.html].

Tests are developed using pytest [https://pytest.org/] with Codecov [https://codecov.io/gh/mirumee/ariadne] for monitoring coverage.

Dev requirements can be installed using Pip extras. For example,
to install all dependencies for doing local development and
running the tests, run pip install -e .[dev,test].

We require all changes to be done via pull requests, and to be approved by member-ranked users before merging.

Working on issues

We consider all issues which are not assigned to anybody as being available for contributors. The help wanted [https://github.com/mirumee/ariadne/labels/help%20wanted] label is used to single out issues that we consider easier or higher priority on the list of things that we would like to see.

If you’ve found issue you want to help with, please add your comment to it - this lets other contributors know what issues are being worked on, as well as allowing maintainers to offer guidance and help.

Pull requests

We don’t require pull requests to be followed with bug reports. If you’ve found a typo or a silly little bug that has no issue or pull request already, you can open your own pull request. We only ask that this PR provides context or explanation for what problem it fixes, or which area of the project it improves.

 [image: _images/logo-horizontal-sm.png]Ariadne [https://ariadnegraphql.org]

[image: _images/03b408d1e597b5bf6e358952463465bce6328b28.svg]Documentation [https://ariadnegraphql.org]
[image: _images/badge.svg]Codecov [https://codecov.io/gh/mirumee/ariadne]

Ariadne

Ariadne is a Python library for implementing GraphQL [http://graphql.github.io/] servers.

	Schema-first: Ariadne enables Python developers to use schema-first approach to the API implementation. This is the leading approach used by the GraphQL community and supported by dozens of frontend and backend developer tools, examples, and learning resources. Ariadne makes all of this immediately available to you and other members of your team.

	Simple: Ariadne offers small, consistent and easy to memorize API that lets developers focus on business problems, not the boilerplate.

	Open: Ariadne was designed to be modular and open for customization. If you are missing or unhappy with something, extend or easily swap with your own.

Documentation is available here [https://ariadnegraphql.org].

Features

	Simple, quick to learn and easy to memorize API.

	Compatibility with GraphQL.js version 15.5.1.

	Queries, mutations and input types.

	Asynchronous resolvers and query execution.

	Subscriptions.

	Custom scalars, enums and schema directives.

	Unions and interfaces.

	File uploads.

	Defining schema using SDL strings.

	Loading schema from .graphql, .gql, and .graphqls files.

	WSGI middleware for implementing GraphQL in existing sites.

	Apollo Tracing and OpenTracing [http://opentracing.io] extensions for API monitoring.

	Opt-in automatic resolvers mapping between camelCase and snake_case, and a @convert_kwargs_to_snake_case function decorator for converting camelCase kwargs to snake_case.

	Built-in simple synchronous dev server for quick GraphQL experimentation and GraphQL Playground.

	Support for Apollo GraphQL extension for Visual Studio Code [https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo].

	GraphQL syntax validation via gql() helper function. Also provides colorization if Apollo GraphQL extension is installed.

	No global state or object registry, support for multiple GraphQL APIs in same codebase with explicit type reuse.

	Support for Apollo Federation.

Installation

Ariadne can be installed with pip:

pip install ariadne

Ariadne requires Python 3.7 or higher.

Quickstart

The following example creates an API defining Person type and single query field people returning a list of two persons. It also starts a local dev server with GraphQL Playground [https://github.com/prisma/graphql-playground] available on the http://127.0.0.1:8000 address.

Start by installing uvicorn [http://www.uvicorn.org/], an ASGI server we will use to serve the API:

pip install uvicorn

Then create an example.py file for your example application:

from ariadne import ObjectType, QueryType, gql, make_executable_schema
from ariadne.asgi import GraphQL

Define types using Schema Definition Language (https://graphql.org/learn/schema/)
Wrapping string in gql function provides validation and better error traceback
type_defs = gql("""
 type Query {
 people: [Person!]!
 }

 type Person {
 firstName: String
 lastName: String
 age: Int
 fullName: String
 }
""")

Map resolver functions to Query fields using QueryType
query = QueryType()

Resolvers are simple python functions
@query.field("people")
def resolve_people(*_):
 return [
 {"firstName": "John", "lastName": "Doe", "age": 21},
 {"firstName": "Bob", "lastName": "Boberson", "age": 24},
]

Map resolver functions to custom type fields using ObjectType
person = ObjectType("Person")

@person.field("fullName")
def resolve_person_fullname(person, *_):
 return "%s %s" % (person["firstName"], person["lastName"])

Create executable GraphQL schema
schema = make_executable_schema(type_defs, query, person)

Create an ASGI app using the schema, running in debug mode
app = GraphQL(schema, debug=True)

Finally run the server:

uvicorn example:app

For more guides and examples, please see the documentation [https://ariadnegraphql.org].

Contributing

We are welcoming contributions to Ariadne! If you’ve found a bug or issue, feel free to use GitHub issues [https://github.com/mirumee/ariadne/issues]. If you have any questions or feedback, don’t hesitate to catch us on GitHub discussions [https://github.com/mirumee/ariadne/discussions/].

For guidance and instructions, please see CONTRIBUTING.md.

Website and the docs have their own GitHub repository: mirumee/ariadne-website [https://github.com/mirumee/ariadne-website]

Also make sure you follow @AriadneGraphQL [https://twitter.com/AriadneGraphQL] on Twitter for latest updates, news and random musings!

Crafted with ❤️ by Mirumee Software [http://mirumee.com]
hello@mirumee.com

name: ✏ Issue or bug report
about: Use for bug reports or other issues with the codebase.
title: ‘’
labels: ‘’
assignees: ‘’

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/logo-horizontal-sm.png
/A ariadne

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

