Ariadne Documentation
Release 0.1

Mirumee Software

Dec 12, 2018

Contents

1 Requirements and installation 3
2 Table of contents 5
2.1 Introduction e e e e 5
22 ResOIVEIS L 8
23 MuUtationsl e e 10
24 Errormessagingo i e e e e e e e e e 14
2.5 Customscalars oL e e e e e e e e e e e e e 15
2.6 Enumeration types oo i i e e e e e e e e e e e e e 18
2.7 Modularization e e e e e e e e e 19
2.8 WSGIMiddleware e e e e 20
29 Customserverexample L e 22
2.10 Ariadnelogo L e e e e 24
Python Module Index 27

Ariadne Documentation, Release 0.1

Ariadne is a Python library for implementing GraphQL servers.

It presents a simple, easy-to-learn and extend API inspired by Apollo Server, with a declaratory approach to type
definition that uses a standard Schema Definition Language shared between GraphQL tools, production-ready WSGI
middleware, simple dev server for local experiments and an awesome GraphQL Playground for exploring your APIs.

Note: While most of GraphQL standard is already supported, Ariadne is currently missing support for the following
features: unions, interfaces and inheritance, and subscriptions.

Contents 1

http://graphql.github.io/
https://www.apollographql.com/docs/apollo-server/
https://graphql.github.io/learn/schema/

Ariadne Documentation, Release 0.1

2 Contents

CHAPTER 1

Requirements and installation

Ariadne requires Python 3.5 or 3.6 and can be installed from Pypi:

pip install ariadne

Ariadne Documentation, Release 0.1

4 Chapter 1. Requirements and installation

CHAPTER 2

Table of contents

2.1 Introduction

Welcome to Ariadne!

This guide will introduce you to the basic concepts behind creating GraphQL APIs, and show how Ariadne helps you
to implement them with just a little Python code.

At the end of this guide you will have your own simple GraphQL API accessible through the browser, implementing
a single field that returns a “Hello” message along with a client’s user agent.

Make sure that you’ve installed Ariadne using pip install ariadne, and that you have your favorite code editor
open and ready.

2.1.1 Defining schema

First, we will with describe what data can be obtained from our API.

In Ariadne this is achieved by defining Python strings with content written in Schema Definition Language (SDL), a
special language for declaring GraphQL schemas.

We will start with defining the special type Query that GraphQL services use as entry point for all reading operations.
Next we will specify a single field on it, named he 110, and define that it will return a value of type St ring, and that
it will never return null.

Using the SDL, our Query type definition will look like this:

type_defs = """
type Query {
hello: String!
}

nwn

The type Query { } block declares the type, hello is the field definition, St ring is the return value type, and
the exclamation mark following it means that returned value will never be null.

https://graphql.github.io/learn/schema/

Ariadne Documentation, Release 0.1

2.1.2 Resolvers
The resolvers are functions mediating between API consumers and the application’s business logic. Every type has
fields, and every field has a resolver function that takes care of returning the value that the client has requested.

We want our API to greet clients with a “Hello (user agent)!” string. This means that the hel1lo field has to have a
resolver that somehow finds the client’s user agent, and returns a greeting message from it.

We know that a resolver is a function that returns value, so let’s begin with that:

def resolve_hello(*_):
return "Hello..." # What's next?

The above code is perfectly valid, minimal resolver meeting the requirements of our schema. It takes any arguments,
does nothing with them and returns blank greeting string.

Real-world resolvers are rarely that simple: they usually read data from some source such as a database, process
inputs, or resolve value in the context of a parent object. How should our basic resolver look to resolve a client’s user
agent?

In Ariadne every field resolver is called with at least two arguments: ob7j parent object, and the query’s execution
info that usually contains the context attribute that is GraphQL’s way of passing additional information from the
application to its query resolvers.

Default GraphQL server implementation provided by Ariadne defines info.context as Python dict containing
a single key named environ containing basic request data. We can use this in our resolver:

def resolve_hello(_, info):
request = info.context["environ"]
user_agent = request.get ("HTTP_USER_AGENT", "guest™)
return "Hello, " % user_agent

Notice that we are discarding the first argument in our resolver. This is because resolve_hello is special type of
resolver: it belongs to a field defined on a root type (Query), and such fields, by default, have no parent that could be
passed to their resolvers. This type of resolver is called a root resolver.

Now we need to map our resolver to the hello field of type Query. To do this, we will create special dictionary
where every key is named after a type in the schema. This key’s value will, in turn, be another dictionary with keys
named after type fields, and with resolvers as values:

resolvers = {
"Query" . {
"hello": resolve_hello

}

A dictionary mapping resolvers to schema is called a resolvers map.

2.1.3 Testing the API

Now we have everything we need to finish our API, with only piece missing being the http server that would receive
the HTTP requests, execute GraphQL queries and return responses.

This is where Ariadne comes into play. One of the utilities that Ariadne provides to developers is a WSGI middleware
that can also be run as simple http server for developers to experiment with GraphQL locally.

6 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

Warning: Please never run GraphQLMiddleware in production without a proper WSGI container such as
uWSGI or Gunicorn.

This middleware can be imported directly from ariadne package, so lets add an appropriate import at the beginning
of our Python script:

from ariadne import GraphQLMiddleware

We will now call GraphQLMiddleware.make_simple_server class method with type_defs and
resolvers as its arguments to construct a simple dev server that we can then start:

print ("Visit the http://127.0.0.1:8888 in the browser and say { hello }!")
my_api_server = GraphQLMiddleware.make_simple_server (type_defs, resolvers)
my_api_server.serve_forever ()

Run your script with python myscript.py (remember to replace myscript . py with name of your file!). If all
is well, you will see a message telling you to visit the http://127.0.0.1:8888 and say { hello }.

This the GraphQL Playground, the open source API explorer for GraphQL APIs. You can enter

113 29

{ hello } query on the left, press the big bright “run” button, and see the result on the right:

[NON T4 [EH] 127.0.0.1 &])]

Q | hello

PRETTIFY HISTORY http:/127.0.0.1:4747/ COPY CURL SHARE PLAYGROUND

hello

1; Intel Ma)
605.1.1 (HTML, 1like Gecko)
on/12.0 Safari/605.1.15!"

SCHEMA

HTTP HEADERS

Your first GraphQL API build with Ariadne is now complete. Congratulations!

2.1.4 Completed code

For reference here is complete code of the API from this guide:

2.1. Introduction 7

http://127.0.0.1:8888
_static/hello-world.png

Ariadne Documentation, Release 0.1

from ariadne import GraphQLMiddleware

type_defs = """
type Query {
hello: String!

nwn

def resolve_hello(_, info):
request = info.context["environ"]
user_agent = request.get ("HTTP_USER_AGENT", "guest")
return "Hello, I'" % user_agent

resolvers = {
"Query": {
"hello": resolve_hello

print ("Visit the http://127.0.0.1:8888 in the browser and say { hello }!")
my_api_server = GraphQLMiddleware.make_simple_server (type_defs, resolvers)
my_api_server.serve_forever ()

2.2 Resolvers

2.2.1 Intro

In Ariadne, a resolver is any Python callable that accepts two positional arguments (obj and info):

def example_resolver (obj: Any, info: ResolveInfo):
return obj.do_something /()

class FormResolver:
def _ _call_(self, obj: Any, info: ResolveInfo, =xdata):

obj is a value returned by obj resolver. If resolver is root resolver (it belongs to the field defined on Query or
Mutation) and GraphQL server implementation doesn’t explicitly define value for this field, the value of this argu-
ment will be None.

info is the instance of ResolveInfo object specific for this field and query. It defines a special context attribute
that contains any value that GraphQL server provided for resolvers on the query execution. Its type and contents are
application-specific, but it is generally expected to contain application-specific data such as authentication state of the
user or http request.

Note: context is just one of many attributes that can be found on ResolveInfo, but it is by far the most com-
monly used one. Other attributes enable developers to introspect the query that is currently executed and implement
new utilities and abstractions, but documenting that is out of Ariadne’s scope. Still, if you are interested, you can find
the list of all attributes here.

8 Chapter 2. Table of contents

https://github.com/graphql-python/graphql-core/blob/02605b1adce7b287fa9ee6beacd735882954159a/graphql/execution/base.py#L66

Ariadne Documentation, Release 0.1

2.2.2 Handling arguments

If GraphQL field specifies any arguments, those arguments values will be passed to the resolver as keyword arguments:

type_de f . mnon
type Query {
holidays (year: Int): [String]!

def resolve_holidays (x_, year=None) :
if year:
Calendar.get_holidays_in_year (year)
return Calendar.get_all_holidays ()

If field argument is marked as required (by following type with !, eg. year: Int!), you can skip the =None in
your kwarg:

def resolve_holidays(x_, year):
if year:
Calendar.get_holidays_in_year (year)
return Calendar.get_all_holidays ()

2.2.3 Default resolver

In cases when the field has no resolver explicitly provided for it, Ariadne will fall back to the default resolver.

This resolver takes field name and, depending if obj object is dict or not, uses get(field_name) or getattr(obj,
field_name, None) to resolve the value that should be returned:

type_de f . nmn
type User {
username: String!

nun

We don't have to write username resolver
for either of those "User" representations:
class UserObj:

username = "admin"

user_dict = {"username": "admin"}

If resolved value is callable, it will be called and its result will be returned to response instead. If field was queried
with arguments, those will be passed to the function as keyword arguments, just like how they are passed to regular
resolvers:

type_def = """
type User {
likes: Int!
initials(length: Int!): String

nwn

class UserObj:
username = "admin"

(continues on next page)

2.2. Resolvers 9

Ariadne Documentation, Release 0.1

(continued from previous page)

def likes(self):
return count_user_likes (self)

def initials(self, length)
return self.name[:length]

user_dict = {
"likes": lambda obj, *_: count_user_likes (obj),
"initials": lambda obj, *_, length: obj.username[:length])

2.2.4 Mapping

Ariadne provides resolve_to utility function, allowing easy creation of resolvers for fields that are named differ-
ently to source attributes (or keys):

from ariadne import resolve_to

...type and resolver definitions...
resolvers = {
"User": {
"firstName": resolve_to("first_name"),
"role": resolve_to("title™),

Resolution logic for firstName and role fields will now be identical to the one provided by default resolver
described above. The only difference will be that the resolver will look at different names.

2.3 Mutations

So far all examples in this documentation have dealt with Query type and reading the data. What about creating,
updating or deleting?

Enter the Mutat ion type, Query’s sibling that GraphQL servers use to implement functions that change application
state.

Note: Because there is no restriction on what can be done inside resolvers, technically there’s nothing stopping
somebody from making Query fields act as mutations, taking inputs and executing state-changing logic.

In practice such queries break the contract with client libraries such as Apollo-Client that do client-side caching and
state management, resulting in non-responsive controls or inaccurate information being displayed in the UI as the
library displays cached data before redrawing it to display an actual response from the GraphQL.

2.3.1 Defining mutations

Lets define the basic schema that implements a simple authentication mechanism allowing the client to see if they are
authenticated, and to log in and log out:

10 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

type_def - nmwn
type Query {
isAuthenticated: Boolean!

type Mutation {
login (username: String!, password: String!): Boolean!
logout: Boolean!

nwn

In this example we have the following elements:

Query type with single field: boolean for checking if we are authenticated or not. It may appear superficial for the
sake of this example, but Ariadne requires that your GraphQL API always defines Query type.

Mutation type with two mutations: 1ogin mutation that requires username and password strings and returns bool
with status, and 1ogout that takes no arguments and just returns status.

For the sake of simplicity, our mutations return bools, but really there is no such restriction. You can have a resolver
that returns status code, an updated object, or an error message:

type_def = """
type Mutation {
login (username: String!, password: String!) {
status: String!
error: Error
user: User

nwn

2.3.2 Writing resolvers

Mutation resolvers are no different to resolvers used by other types. They are functions that take parent and info
arguments, as well as any mutation’s arguments as keyword arguments. They then return data that should be sent to
client as a query result:

def resolve_login(_, info, username, password):

request = info.context["request"]
user = auth.authenticate (username, password)
if user:

auth.login (request, user)
return True
return False

def resolve_logout(_, info):
request = info.context["request"]
if request.user.is_authenticated:
auth.logout (request)
return True
return False

Because Mutation is a GraphQL type like others, you can map resolvers to mutations using dict:

2.3. Mutations 11

Ariadne Documentation, Release 0.1

resolvers {

"Mutation": {
"login": resolve_login,
"logout": resolve_logout,

2.3.3 Inputs

Let’s consider the following type:

type_def = """

type Discussion {
category: Category!
poster: User
postedOn: Date!
title: String!
isAnnouncement: Boolean!
isClosed: Boolean!

nwn

Imagine a mutation for creating Discussion that takes category, poster, title, announcement and closed states as
inputs, and creates a new Discussion in the database. Looking at the previous example, we may want to define it
like this:

type_def = """
type Mutation {
createDiscussion (category: ID!, title: String!, isAnnouncement: Boolean,
—~isClosed: Boolean) {
status: Boolean!
error: Error
discussion: Discussion

Our mutation takes only four arguments, but it is already too unwieldy to work with. Imagine adding another one or
two arguments to it in future - its going to explode!

GraphQL provides a better way for solving this problem: input allows us to move arguments into a dedicated type:

type_def = """
type Mutation {
createDiscussion (input: DiscussionInput!) {
status: Boolean!
error: Error
discussion: Discussion

input DiscussionInput {
category: ID!
title: String!,
isAnnouncement: Boolean
isClosed: Boolean

(continues on next page)

12 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

(continued from previous page)

nun

Now when client wants to create a new discussion, they need to provide an input object that matches the
DiscussionInput definition. This input will then be validated and passed to the mutation’s resolver as dict

available under the input keyword argument:

def resolve_create_discussion(_, info, input):
clean_input = {

"category": input["category"],
"title": input["title"],
"is_announcement": input.get ("isAnnouncement"),

"is_closed": input.get ("isClosed"),

try:
return ({
"status": True,
"discussion": create_new_discussion(info.context, clean_input),

}
except ValidationError as err:
return ({
"status": False,
"error: err,

Another advantage of input-s is that they are reusable. If we later decide to implement another mutation for updating
the Discussion, we can do it like this:

type_def = """
type Mutation {

createDiscussion (input: DiscussionInput!) {
status: Boolean!
error: Error
discussion: Discussion

}

updateDiscussion (discussion: ID!, input: DiscussionInput!) {

status: Boolean!
error: Error
discussion: Discussion

input DiscussionInput {
category: ID!
title: String!,
isAnnouncement: Boolean
isClosed: Boolean

Our updateDiscussion mutation will now accept two arguments: discussion and input:

def resolve_update_discussion(_, info, discussion, input):
clean_input = {
"category": input["category"],

(continues on next page)

2.3. Mutations 13

Ariadne Documentation, Release 0.1

(continued from previous page)

"title": dinput["title"],
"is_announcement": input.get ("isAnnouncement"),
"is_closed": input.get ("isClosed"),

try:
return {
"status": True,
"discussion": update_discussion (info.context, discussion, clean_input),
}
except ValidationError as err:
return ({
"status": False,
"error: err,

You may wonder why you would want to use input instead of reusing already defined type. This is because input
types provide some guarantees that regular objects don’t: they are serializable, and they don’t implement interfaces
or unions. However input fields are not limited to scalars. You can create fields that are lists, or even reference other

inputs:

type_def = """
input PollInput {
question: String!,
options: [PollOptionInput!]!

input PollOptionInput {
label: String!
color: String!

Lastly, take note that inputs are not specific to mutations. You can create inputs to implement complex filtering in your
Query fields.

2.4 Error messaging

If you’ve experimented with GraphQL, you should be familiar that when things don’t go according to plan, GraphQL
servers include additional key errors to the returned response:

{
"error": {
"errors": [
{
"message": "Variable \"$input\" got invalid value .\nIn field \
—"name\": Expected \"String!\", found null.",
"locations": [
{
"line": 1,
"column": 21
}
]
}

(continues on next page)

14 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

(continued from previous page)

Your first instinct when planning error messaging may be to use this approach to communicate custom errors (like
permission or validation errors) raised by your resolvers.

Don’t do this.

The errors key is, by design, supposed to relay errors to other developers working with the API. Messages present
under this key are technical in nature and shouldn’t be displayed to your end users.

Instead, you should define custom fields that your queries and mutations will include in result sets, to relay eventual
errors and problems to clients, like this:

type_def = """
type Mutation {
login (username: String!, password: String!) {
error: String
user: User

nun

Depending on success or failure, your mutation resolver may return either an error message to be displayed to the
user, or user that has been logged in. Your API result handling logic may then interpret the response based on the
content of those two keys, only falling back to the main errors key to make sure there wasn’t an error in query
syntax, connection or application.

Likewise, your Query resolvers may return a requested object or None that will then cause a message such as
“Requested item doesn’t exist or you don’t have permission to see it” to be displayed to the user in place of the
requested resource.

2.5 Custom scalars

Custom scalars allow you to convert your Python objects to JSON-serializable form in query results, as well as convert
those JSON forms back to Python objects back when they are passed as arguments or input values.

2.5.1 Example read-only scalar

Consider this API defining Story type with publishedOn:

type_defs = """
type Story {
content: String
publishedOn: String

nwn

The publishedOn field’s resolver returns instance of type datet ime, but in API this field is defined as St ring.
This means that our datetime will be passed throught the st r () before being returned to client:

2.5. Custom scalars 15

Ariadne Documentation, Release 0.1

"publishedOn": "2018-10-26 17:28:54.416434"

This may look acceptable, but there are better formats to serialize timestamps for later deserialization on the client,
like ISO 8601. We could perform this conversion in our resolver:

def resolve_published_on(obj, =*_):
return obj.published_on.isoformat ()

...but now you will have to remember to define custom resolver for every field that receives datetime as value.
This really adds up the boilerplate to our API, and makes it harder to use abstractions auto-generating the resolvers for
you.

Instead, you could tell GraphQL how to serialize dates by defining custom scalar type:

type_defs = """
type Story {
content: String
publishedOn: Datetime

scalar Datetime

If you will try to query this field now, you will get error:

{

"errors": [
{
"message": "Expected a value of type \"Datetime\" but received: 2018-10-
—26 17:39:55.502078",
"path": [
"publishedOn"

1y

This is because our custom scalar has been defined, but it’s currently missing logic for serializing Python values to
JSON form.

We need to add special resolver named serialize to our Datetime scalar that will implement the logic we are
expecting:

def serialize_datetime (value) :
return value.isoformat ()

resolvers = {
"Datetime": {
"serialize": serialize_datetime

Doing so will make GraphQL server use custom logic whenever value that is not None is returned from resolver:

16 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

"publishedOn": "2018-10-26T17:45:08.805278"

Now we can reuse our custom scalar across the API to serialize dat et ime instances in standardized format that our
clients will understand.

2.5.2 Scalars as input

What will happen if now we create field or mutation that defines argument of the type Datet ime? We can find out
using basic resolver:

type_defs = """
type Query {
stories (publishedOn: Datetime): [Story!]!

def resolve_stories (x_, ==*data):
print (data.get ("publishedOn")) # what value will "publishedOn" be?

data.get ("publishedOn") will return False, because that is fallback value of read-only scalars.

To turn our read-only scalar into bidirectional scalar, we will need to add two functions to serialize that was
implemented in previous step:

* parse_value (value) that will be used when scalar value is passed as part of query variables.

* parse_literal (ast) that will be used when scalar value is passed as part of query content (eg. {
stories (publishedOn: "2018-10-26T17:45:08.805278") { ... } }).

Those functions can be implemented as such:

def parse_datetime_value (value) :
try:
dateutil is provided by python—-dateutil library
return dateutil.parser.parse (value)
except (ValueError, TypeError):
return None

def parse_datetime_literal (ast):

value = str (ast.value)
return parse_value (value) # reuse logic from parse value
resolvers = {
"Datetime": {
"serialize": serialize_datetime,

"parse_value": parse_datetime_value,
"parse_literal": parse_datetime_literal,

There’s few things happening in above code, so let’s go through them step by step:

There aren’t any checks to see if arguments passed to function are None because if that is the case, GraphQL server
skips our parsing step altogether.

2.5. Custom scalars 17

Ariadne Documentation, Release 0.1

When value is incorrect and either ValueError and TypeError exceptions are raised, they are silenced and
function returns None instead. GraphQL server interprets this as sign that entered value is incorrect because it can’t
be transformed to internal representation, and returns appropriate error to the client. This is preferable approach to
raising exceptions from parser, because in such case those exceptions interrupt query execution logic (prohibiting
possible partial result), as well as result in error messages possibly leaking implementation details to the client.

If value is passed as part of query content, it’s ast node is instead passed to parse_datetime_literal to give
it chance to introspect type of node (implementations for those be found here), but we are opting in for just extracting
whatever value this ast node had, coercing it to st r and reusing parse_value.

2.6 Enumeration types

Ariadne supports enumeration types, which are represented as strings in Python logic:

from db import get_users

type_defs = """
type Query{
users (status: UserStatus): [User]!

enum UserStatus{
ACTIVE
INACTIVE
BANNED

nun

def resolve_users (*_, status):
if status == "ACTIVE":
return get_users (is_active=True)
if status == "INACTIVE":
return get_users (is_active=False)
if status == "BANNED":
return get_users (is_banned=True)

resolvers = {
"Query": {
"users": resolve_users,

Above example defines resolver that returns list of users based on user status, defined using UserStatus enumerable
from schema.

Implementing logic validating if status value is allowed is not required - this is done on GraphQL level. This query
will produce error:

{

users (status: TEST)

GraphQL failed to find TEST in UserStatus, and returned error without calling resolve_users:

18 Chapter 2. Table of contents

https://github.com/graphql-python/graphql-core/blob/master/graphql/language/ast.py#L483
https://graphql.org/learn/schema/#enumeration-types

Ariadne Documentation, Release 0.1

"error": {
"errors": [
{
"message": "Argument \"status\" has invalid value TEST.\nExpected_
—type \"UserStatus\", found TEST.",
"locations": [
{
"line": 2,
"column": 14

2.7 Modularization

Ariadne allows you to spread your GraphQL API implementation over multiple Python modules.

Types can be defined as list of strings instead of one large string and resolvers can be defined as list of dicts of dicts
for same effect. Here is example of API that moves scalars and User to dedicated modules:

graphglapi.py
from ariadne import GraphQLMiddleware
from . import scalars, users

Defining Query and Mutation types in root module is optional
but makes it easier to see what features are implemented by the API
without having to run and introspect it with GraphQL Playground.
root_type_defs = """
type Query {
users: [Users!]

nwn

graphgl_server = GraphQLMiddleware.make_simple_server (
[root_type_defs, scalars.type_defs, users.type_defs],
[scalars.resolvers, users.resolvers]

scalars.py
type_defs = """
scalar Date

scalar Datetime
nmnon

resolvers = {
"Date": {},
"Datetime": {},

users.py
type_defs = """

(continues on next page)

2.7. Modularization 19

Ariadne Documentation, Release 0.1

(continued from previous page)

type User {
username: String!
joinedOn: Date!
lastVisitOn: Datetime

def resolve_users (*_):
return get_some_users ()

resolvers = {
"User": {}, # User resolvers will be merged with other resolvers
"Query": {
"users": resolve_users, # Add resolvers for root type too

by

2.8 WSGI Middleware

Ariadne provides GraphQLMiddleware that realizes following goals:

* is production-ready WSGI middleware that can be added to existing setups to start building GraphQL API
quickly.

* it’s designed to encourage easy customization through extension.
* provides reference implementation for Ariadne GraphQL server.

* implements make_simple_server utility for running local development servers without having to setup full-
fledged web framework.

2.8.1 Using as Middleware

To add GraphQL API to your project using GraphQLMiddleware instantiate it with your existing WSGI application
as first argument, type defs as second and resolvers as third:

in wsgi.py
import os

from django.core.wsgi import get_wsgi_application
from ariadne import GraphQLMiddleware
from mygraphqgl import type_defs, resolvers

os.environ.setdefault ("DJANGO_SETTINGS_MODULE", "mydjangoproject.settings")

django_application = get_wsgi_application()
application = GraphQLMiddleware (django_application, type_defs, resolvers)

Now direct your WSGI container to wsgi.application. GraphQL API is available on /graphgl/ by default, but this
can be customized by passing path as fourth argument:

20 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

GraphQL will now be available on "/graphgl-v2/" path
application = GraphQLMiddleware (

django_application, type_defs, resolvers, "/graphgl-v2/"
)

2.8.2 Customizing context or root

GraphQLMiddleware defines two methods that you can redefine in inheriting classes:
GraphQLMiddleware.get_query_root (environ, request_data)
Parameters
* environ — dict representing HTTP request received by WSGI server.
* request_data — json that was sent as request body and deserialized to dict.
Returns value that should be passed to root resolvers as first argument.
GraphQLMiddleware.get_query_context (environ, request_data)
Parameters
* environ - dict representing HTTP request received by WSGI server.
* request_data — json that was sent as request body and deserialized to dict.
Returns value that should be passed to resolvers as context attribute on info argument.

Following example shows custom GraphQL middleware that defines its own root and context:

from ariadne import GraphQLMiddleware:
from . import Dataloader, MyContext

class MyGraphQLMiddleware (GraphQLMiddleware) :
def get_query_root (self, environ, request_data):
return Dataloader (environ)

def get_query_context (self, environ, request_data):
return MyContext (environ, request_data)

2.8.3 Using simple server
GraphQLMiddleware and inheriting types define class method make_simple_server with following signa-
ture:
GraphQLMiddleware .make_simple_server (type_defs, resolvers, host="127.0.0.1", port=8888)
Parameters
* type_defs — stror list of str with SDL for type definitions.
* resolvers —dict or list of dict with resolvers.
* host - str of host on which simple server should list.
* port — int of port on which simple server should run.

Returns instance of wsgiref.simple_server.WSGIServer with middleware running as
WSGTI app handling all incoming requests.

2.8. WSGI Middleware 21

Ariadne Documentation, Release 0.1

The make_simple_server respects inheritance chain, so you can use it in custom classes inheriting from
GraphQLMiddleware:

from ariadne import GraphQLMiddleware:
from . import type_defs, resolvers

class MyGraphQLMiddleware (GraphQLMiddleware) :
def get_query_context (self, environ, request_data):
return MyContext (environ, request_data)

simple_server = MyGraphQLMiddleware (type_defs, resolvers)
simple_server.serve_forever () # info.context will now be instance of MyContext

2.9 Custom server example

In addition to simple GraphQL server implementation in form of GraphQLMiddleware, Ariadne provides building
blocks for assembling custom GraphQL servers.

2.9.1 Creating executable schema

The key piece of the GraphQL server is an executable schema - a schema with resolver functions attached to fields.

Ariadne provides a make_executable_schema utility function that takes type definitions as a first argument and
a resolvers map as the second, and returns an executable instance of GraphQLSchema:

from ariadne import make_executable_schema

type_defs = """
type Query {
hello: String!

def resolve_hello(_, info):
request = info.context["environ"]
user_agent = request.get ("HTTP_USER_AGENT", "guest")
return "Hello, ' % user_agent
resolvers = {
"Query": {
"hello": resolve_hello
}
}
schema = make_executable_schema (type_defs, resolvers)

This schema can then be passed to the graphgl query executor together with the query and variables:

from graphqgl import graphgl

result = graphgl (schema, query, variables={})

22 Chapter 2. Table of contents

Ariadne Documentation, Release 0.1

2.9.2 Basic GraphQL server with Django

The following example presents a basic GraphQL server using a Django framework:

import json

from ariadne import make_executable_schema
from ariadne.constants import PLAYGROUND_HTML
from django.http import (
HttpResponse, HttpResponseBadRequest, JsonResponse
)
from django.views import View
from graphqgl import format_error, graphgl

type_defs = """
type Query {
hello: String!

nwn

def resolve_hello(_, info):
request = info.context["environ"]
user_agent = request.get ("HTTP_USER_AGENT", "guest™)

)

return "Hello, %s!" % user_agent

resolvers = {
"Query": {
"hello": resolve_hello

Create executable schema instance
schema = make_executable_schema (type_defs, resolvers)

Create GraphQL view
class GraphQLView (View) :
On GET request serve GraphQL Playground
You don't need to provide Playground if you don't want to
bet keep on mind this will nor prohibit clients from
exploring your API using desktop GraphQL Playground app.
def get (self, request, xargs, =*xkwargs):
return HttpResponse (PLAYGROUND_HTML)

GraphQL queries are always sent as POSTd
def post(self, request, =*args, xxkwargs):
Reject requests that aren't JSON
if request.content_type != "application/Jjson":
return HttpResponseBadRequest ()

Naively read data from JSON request
try:

data = json.loads (request.data)
except ValueError:

return HttpResponseBadRequest ()

(continues on next page)

2.9. Custom server example

23

Ariadne Documentation, Release 0.1

(continued from previous page)

Check 1if instance data is not empty and dict
if not data or not isinstance(data, dict):
return HttpResponseBadRequest ()

Check 1f variables are dict:

variables = data.get ("variables")

if variables and not isinstance (variables, dict):
return HttpResponseBadRequest ()

Execute the query

result = graphqgl (
schema,
data.get ("query"),
context=request, # expose request as info.context
variables=data.get ("variables"),
operation_name=data.get ("operationName"),

Build valid GraphQL API response
status = 200

response = {}
if result.errors:
response["errors"] = map (format_error, result.errors)

if result.invalid:
status = 400
else:
response["data"] = result.data

Send response to client
return JsonResponse (response, status=status)

2.10 Ariadne logo

Ariadne logo is an “A” shaped labyrinth. If your project uses Ariadne and you want to share the love, feel free to place

the logo somewhere on your site and link back to https://github.com/mirumee/ariadne:

2.10.1 Complete logo

/A\ ariadne

24 Chapter 2. Table of contents

_static/logo.png

Ariadne Documentation, Release 0.1

2.10.2 Labyrinth only

2.10.3 Vertical logo

ariadne

2.10. Ariadne logo 25

_static/icon.png
_static/logo-vertical.png

Ariadne Documentation, Release 0.1

26 Chapter 2. Table of contents

Python Module Index

a

ariadne, 20

27

Ariadne Documentation, Release 0.1

28 Python Module Index

Index

A

ariadne (module), 20

G

get_query_context() (ariadne.GraphQLMiddleware
method), 21

get_query_root() (ariadne.GraphQLMiddleware method),
21

M

make_simple_server() (ariadne.GraphQLMiddleware
method), 21

29

	Requirements and installation
	Table of contents
	Introduction
	Resolvers
	Mutations
	Error messaging
	Custom scalars
	Enumeration types
	Modularization
	WSGI Middleware
	Custom server example
	Ariadne logo

	Python Module Index

